Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Coronaviruses ; 2(12) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2263677

ABSTRACT

Background: Coronavirus-19 (COVID-19) pandemic is a worldwide public health problem causing 347,070 deaths from December 25, 2019, till May 25, 2020. Phospholipids are structural components of mammalian cytoskeleton and cell membranes. Phosphatidylglycerol is an anionic lipid found in mammalian membranes in low amounts (1-2%) of the total phospholipids. Also, phosphatidylglycerol suppresses viral attachment to the plasma membrane and subsequent replication in lung cells. Phosphatidylglycerol depletion caused by over expression of cytosolic phos-pholipase A2alpha induces lipid accumulation in lung alveoli and promotes acute respiratory distress syndrome (ARDS). An exogenous-surfactant replacement has been successfully achieved in ARDS and improved oxygenation and lung mechanics. Inhibition of cytosolic phospholipase A2alpha impairs an early step of COVID-19 replication. Aim(s): The present study was carried out to explain the correlation between the administration of exogenous artificial surfactant as well as cytosolic phospholipase A2alpha inhibitors to improve oxygenation and lung mechanics and inhibit COVID-19 replication. Method(s): Database research was carried out on Medline, Embase, Cochrane Library, country-spe-cific journals, and following-up WHO reports published between December 25, 2019-May 25, 2020. Result(s): Till 25 May 2020, coronavirus cases were 5,307,298, with 347,070 deathsand 2,314,849 recovered cases. According to the WHO reports, most COVID-19 deaths seen are in people who suffered from other chronic diseases characterized by phospholipidosis and phosphatidylglycerol deficiency, including hypertension, liver, heart, and lung diseases and diabetes. Phospholipases A2 (PLA2) catalyze the cleavage of fatty acids esterified at the sn-2 position of glycerophospholipids leading to enhanced inflammation and lung damage. Also, cytosolic phospholipase A2alpha inhibitors may reduce the accumulation of viral proteins and RNA. In addition, administration of exogenous phospholipid surfactant may help COVID-19 infected patients with ARDS to remove inflammatory mediators. Conclusion(s): The present study showed a relation between phosphatidylglycerol deficiency in COVID-19 infected patients with ARDS and/or chronic diseases and their mortality. These findings also showed an important approach for the prevention and treatment of COVID-19 infections by using cytosolic phospholipase A2alpha inhibitors and exogenous administration of a specific phos-pholipid surfactant.Copyright © 2021 Bentham Science Publishers.

2.
Mol Neurobiol ; 58(1): 106-117, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-746880

ABSTRACT

The SARS-CoV-2 virus that is the cause of coronavirus disease 2019 (COVID-19) affects not only peripheral organs such as the lungs and blood vessels, but also the central nervous system (CNS)-as seen by effects on smell, taste, seizures, stroke, neuropathological findings and possibly, loss of control of respiration resulting in silent hypoxemia. COVID-19 induces an inflammatory response and, in severe cases, a cytokine storm that can damage the CNS. Antimalarials have unique properties that distinguish them from other anti-inflammatory drugs. (A) They are very lipophilic, which enhances their ability to cross the blood-brain barrier (BBB). Hence, they have the potential to act not only in the periphery but also in the CNS, and could be a useful addition to our limited armamentarium against the SARS-CoV-2 virus. (B) They are non-selective inhibitors of phospholipase A2 isoforms, including cytosolic phospholipase A2 (cPLA2). The latter is not only activated by cytokines but itself generates arachidonic acid, which is metabolized by cyclooxygenase (COX) to pro-inflammatory eicosanoids. Free radicals are produced in this process, which can lead to oxidative damage to the CNS. There are at least 4 ways that antimalarials could be useful in combating COVID-19. (1) They inhibit PLA2. (2) They are basic molecules capable of affecting the pH of lysosomes and inhibiting the activity of lysosomal enzymes. (3) They may affect the expression and Fe2+/H+ symporter activity of iron transporters such as divalent metal transporter 1 (DMT1), hence reducing iron accumulation in tissues and iron-catalysed free radical formation. (4) They could affect viral replication. The latter may be related to their effect on inhibition of PLA2 isoforms. Inhibition of cPLA2 impairs an early step of coronavirus replication in cell culture. In addition, a secretory PLA2 (sPLA2) isoform, PLA2G2D, has been shown to be essential for the lethality of SARS-CoV in mice. It is important to take note of what ongoing clinical trials on chloroquine and hydroxychloroquine can eventually tell us about the use of antimalarials and other anti-inflammatory agents, not only for the treatment of COVID-19, but also for neurovascular disorders such as stroke and vascular dementia.


Subject(s)
Antimalarials/therapeutic use , COVID-19 Drug Treatment , COVID-19/complications , Nervous System Diseases/drug therapy , Nervous System Diseases/etiology , SARS-CoV-2 , Animals , Antimalarials/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , COVID-19/metabolism , Humans , Nervous System Diseases/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL